Sprite Lamp release plans

This is the post where I talk about the near future of Sprite Lamp and releasing on various platforms. Yesterday I posted about Spine integration, and I’m also working on the tools for editing depth maps. There are a couple of other smaller features I’m hoping to have added at some point, such as loading of custom shaders, but when the depth editing is done, Sprite Lamp (the standalone application, for Windows) is getting startlingly close to finished. Given that, I’m going to try to make the next release a Steam release. Fingers crossed, I can make this happen in something like the next couple of weeks.

Questions of Steam early access

I’ve given a lot of thought to early access, because I have slightly mixed feelings on it in practice. I don’t want to be ‘one of the bad ones’ – I feel like there’s a certain amount of frustration going around with certain early access projects for various reasons, and I don’t want Sprite Lamp to be one of those.  On the other hand, betas are useful for various reasons, and a platform like Steam is a good way of carrying them out. There can also be hiccups in the implementation of being on Steam itself – it’d be nice to have a chance to make sure Steam-specific things work (for instance, upgrading from hobbyist to pro will be done using the DLC system, I need to make sure that works smoothly) before it goes to a bigger audience.

So I’m pretty open to suggestion on this strategy, but currently I’m thinking of trying to get the Windows build out as a closed beta (which will involve me trying to get Steam keys to everyone who has already got Sprite Lamp by Kickstarter or through PayPal). Once that’s sorted, we’ll go into early access – at that point, it’ll be at the current (slightly) discounted Kickstarter/early price of $35/$90. When it releases fully, it’ll be for $40/$100. I’m going to try to make this early access period as quick as possible, though. During the early access period, I’ll also try to get a maximally polished Linux build onto Steam. The current Mac build isn’t really Steam-ready, though – a fact probably known to those who have tried using it. That brings us to the next section.

Sprite Lamp for MacOS

For a while I’ve been in contact with a fellow I know by the name of Rob Caporetto who was potentially going to help me out with the native UI version of Sprite Lamp for MacOS. He’s got some experience with MacOS and C#, which isn’t the most common combination of skills, so it seemed pretty ideal. Unfortunately he wasn’t free to work on stuff until fairly recently, but I’ve been in contact with him and he’s had some time to look over the source code. We’ve talked about what needs to be done and how to do it, and come to some conclusions:

  • It’s probably not worth holding up the other releases to wait for this one. I didn’t make this decision lightly, because I had always wanted a simultaneous release, but at the same time, it seems pointless to keep a working build out of Windows and Linux users’ hands just for the sake of that (especially when those two groups are likely well over half the users).
  • There’s a small amount of work for me to do on the codebase to get it ready for porting, which I’m going to jump into as soon as the depth editing stuff is done.
  • It’s probably somewhere in the ballpark of a month of work. As such, I’m going prioritise doing as much as possible of the port stuff myself, especially the grunt work, and Rob can spend all his time on the hard bits. That way it’ll be in Mac users’ hands as soon as possible.
  • More than was the case with the rest of the development, we’ll be able to prioritise the adding of features so that the most commonly used ones are in first, and as soon as we have something pretty usable, we’ll put it out there (on Steam, if we’re at that point by then, or otherwise in a regular update).
  • More as it develops.

So, that’s that. I’m pretty damn excited to see the first build working on MacOS, but not half as much as Halley is (being the artist behind Sprite Lamp’s sample art, and a mac user).

More engine integration

The other part missing from this story is the future of engine integration. More than any other part of the development of Sprite Lamp, engine integration has taken me off guard scheduling-wise, because it’s hard not to get tangled up in small details when you’re working with unfamiliar tech. However, once this next release is sorted, I’ll be able to get into doing some of the integrations closer to full-time. First priority will be Unity since so many people use that, then I’ll look at rejiggering some of the Game Maker stuff, and then basically I’m going to go through the history of people requesting engine integrations and try to get as many sorted as I reasonably can. So far I’ve been including engine integration stuff with Sprite Lamp, but when there’s a bit more complete I’ll be making them all available for free download here.

Sprite Lamp and Spine

As I’ve mentioned recently, I’ve been playing with Spine and Sprite Lamp. It’s time to talk a bit about how that’s going and what it means.

Spine files in Sprite Lamp

The main thing I’ve been working on lately is loading up Spine files in Sprite Lamp, so you can view them, animated and dynamically lit, in Sprite Lamp’s preview window. And, it’s working! It looks something like this:

Sprite Lamp with an example Spineboy animation loaded
Spineboy artwork and animation is from Esoteric Software, with our own lighting profiles/normal maps applied.

As you can sort of see from the screenshot, the interface is not terribly complex – you load up a .json file and you have your character. You’ll also need to (draw and) load up lighting profiles in atlas form (if the files are named properly Sprite Lamp will automatically grab them), and then off you go. You can select any animation in the Spine file and also select different skins. You can also control the speed and direction of the animation playing.

The walk is a bit slower than I’d like, perhaps, but here’s an illuminated Spineboy, with a static light to make it easier to see what’s happening:

Spineboy walking with dynamic lightingThere’s a certain amount of dodginess regarding the bending of the knees, though for artwork that was made without dynamic lighting in mind, I think he came out pretty well. The fact that this is truly dynamically lit, rather than just faked, is most evident on the parts that are rotating the most, particularly the right hand.

The intricacies of rotating normals

It might be helpful, particularly for programmers, to have a bit of a grip on the maths behind this kind of thing. If that’s not your bag, you might want to skip this section.

It’s tempting to think that all you need to render a normal-mapped Spine character is the ability to render a normal mapped sprite combined with the ability to render a conventional Spine character. Unfortunately, the rendering side is slightly more complex than that (NB: I’m just talking about the shader maths here – these complications are not the artist’s problem).

Naturally, rendering a Spine character involves moving and rotating various images about. This is nothing special – rotating a textured quad is something computers have been able to do happily for decades, after all. You paint your character’s leg image or whatever, then you rotate it, and you’re all good. However, when normal maps become involved, things get slightly more complex. If a normal map has a pixel that encodes a vector that faces to the right, and you rotate the whole image 90 degrees clockwise, that pixel should now be facing down. But, its colour hasn’t changed – it still encodes ‘faces to the right’. If you rotate it another 90 degrees, so it should be facing to the left, it still appears to be ‘facing to the right’. This problem gets worse the more the character rotates. Some Spine enthusiasts reading might remember ages ago when Sprite Lamp was in its Kickstarter phase, we had a few shots at Spineboy walking around with dynamic lighting. If I recall correctly, this problem was present in those demos. It was very subtle, because no part of Spine Boy rotates a huge amount during his walk cycle, but it was there. Fortunately, the solution is not terribly complex – you simply have to tell the shader how much each body part has rotated from its default position, and rotate the normal by that amount in the pixel shader Done!

But, you might justifiably be wondering: what of soft skinning? After all, the fine folks at Esoteric Software have been hard at work following their recent Kickstarter adding soft skinning and free form deformation (FFD) to Spine. It’s not obvious what it means to refer to ‘rotation’ when the rotation of a point is going to vary throughout a mesh. And, indeed, this does get a bit more complicated. For Sprite Lamp, I’ve decided to go with a fragment-shader solution to this problem. It involves using the derivative functions in GLSL to compare the the world position and UV coordinate of a fragment with its neighbouring fragments, which enables you to calculate a thing called a TBN matrix (tangent, bitangent, normal). When this release comes along, I’ll talk a bit more about how this is done in the shader. The takeaway is that in the next release, Sprite Lamp should smoothly handle all the different types of animation Spine can throw at it – textured quads, but also soft skinning and FFD. As a demonstration/stress test, Halley has cooked up a slithering snake animation. She wanted me to make it clear that this is not her best work and she’s not very experienced with Spine animation. As far as a clear demonstration of variable rotation on a soft-skinned mesh, though, this does nicely:

Snake slithering to the leftYou can see here that with the light source on the left, the coils of the snake are picking up the lighting correctly as they wave. It’s not obvious for all animations when the normals aren’t being computed correctly, but in the case of this snake it’s something of a stress test.

Spine and Sprite Lamp in your game engine

So, so far the work has been on getting Spine animations displaying in Sprite Lamp. You might be wondering when you can actually put this in your game.

Unfortunately, the answer to that depends on a bunch of factors. I’m only one programmer, and the crossover between Spine and Sprite Lamp is only one of the many parts of Sprite Lamp. Once Sprite Lamp is out (like, out out, not in alpha like it is now) I’ll be able to give a much more thorough look into engine integration. My policy with Spine will be similar to my policy with the rest of Sprite Lamp’s engine integration: I’ll do as many as I reasonably can myself. Since there are a lot of engines in the world, and I can only cover a few of them, I’ll also do my best to document everything you need to know as a programmer to get things working yourself, be it in an existing game engine that I haven’t been able to cover, or in your own hand-coded system.

That all being said, somewhat predictably, my priorities towards the most widely-used engines will remain, meaning Unity will be first on the list. I’ll be posting more of that as I know it.